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ABSTRACT

This report formulates and solves in state space
notation the error equation for inertial navigation sys-
tems. The system is assumed to be moving at a constant
celestial longitude rate. The state transition matrix
is explicitly derived both for long-term and short-term
aperation. Examples are included to demonstrate the ease
with which the state transition matrix can be used for
error analysis.
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g ~ gravity magnitude
eN’ Ept eb n error angles relating the computed or instrumented
geographic frame to the geographic frame. These

error angles result frbm positive rotations of

the computed or instrument axes with respect to

the geographic axes.
8L ~ latitude error
SA longitude error

Eqguation (1) is valid for a navigation system which is assumed to
be moving at a constant celestial Iongitude rate (fixed base navi-
gation is included as a special case). It has been assumed that
the Coriolis compensations are sSupplied either from external in-
formation or without error.

2. Formulation in State Space Notation

Since this equation arises so frequently, it is advantageous
to use state space methods to obtain a solution which is valid

for an arbitrary forcing vector. This is accomplished by writing
equation (1) as follows:
x(t) = A x(t) + B(t) u(t) (2)

where

x(t) = {egr eyr epr 8L, 81, 8L, 61} (3)



0 -i sinL 0 -1 sinL 0 0 cosL-
X sinL 0 A cosL 0 0 -1 0
0 -1 cosL 0 fi cosL 0 0 ;sinL
A= 0 0 0 0 0 1 0
- 0 0 0 0 0 0 1
0 g 0 0 0 0 0
_-g- secL 0 0 0 0 0 0

u(t) " 7th order forcing vector

B(t) N T ox qth order matrix rotating the forcing vector to the
state

superdot v time differentiation

3. State Transition Matrix

The solution to eguation (2) is given in terms of the state

transition matrix, @(t) =-eét as:

Cx(t) = B(t-t)x(t)) + f’go 2(t-0) " B(o)u(o)do (4)

The state transition matrix satisfies the matrix differential equa-
tion:

e(t-t)) = A o(t-t),

the initial condition:



where I is the identity matrix, and the composition law:
= O —
2(t) = 2(t-t ) 2(t)

from which it follows that:

<

o7l e) = a(-t)
The transition matrix is found from the relationship:

where
S n Laplace operator
L“l v inverse Laplace transformation

0"t

"~ matrix inversion operator

(5)

Applying equation (5), the state transition matrix is found to be

given by:
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4, State Transition Matrix for Short Sampling Times

The state space approach is used when‘optimal filtering tech-
nigues are applied to the inertial navigation system. In this situ-~
ation, the state transition matrix is used to model the system's
~behavior over the sampling time, T. Tﬁus small angle assumptions

can be made in the above expression:

cos w_t X, e < 10% for T < 6 min
..wszz .

vl - 51 e < 10% for T < 16 min

sin w t s w Ty e < 10% for T < 12 min
ws3T3

?:’wST— 6,e<10%for'1‘< 23 min
cos At X 1, e < 10% for T < 100 min, A= W,
sin it 2 i, e < 103 for T < 190 min, A = w,_

where e is the maximum error associated with the approximation.
Thus for update times of less than six minutes (T < 6 min), the

féllowing state transition matrix should give adequate results:

i 1 -3t sinkL 0 —it sinLAO 0 t cosL |
At sinL 1 At cosL 0 0 ~t 0
0 -it.coéL 1 -At cosL 0 0 -t sinL
o(t) = 0 0 0 1 0 't 0 {1 N
0 0 0 0 1 0 t
0 wszt 0 0 0 1 0
~w._.2t secL 0 0 0 0 0 1




5. Examples

5.1 1Initial Condition Errors

The solution for the initial condition errors is made by in-
spection of equations (4) and (6). Thus:

<

x(t) = 2(t) x(0)

A}

where ¢(t) is given by equation (6) and x(t) is given by equation

(3).

5.2 Accelerometer Bias Errors
If we take accelerometer bias to be the sole source of error,

then it can be shown that:?*
F(t) =F = {0, 0, 0, (Wfy, (Wi} .

where (u)fN anaw(u)fE are the north and east accelerometer bias',

respectively. Thus, in state space notation,

0 0 1 o |
0 0 0
0 0 0
0 0 :
(u)fN 0
B(t) u(t) =Bu=|0 0 = 0
= 0 =(u) £
r r N
" secL :
0 secL

*Britting, K.R.; "Analysis of Local Vertical Inertial Navigation
Systems,"” M.S.L. Report RE-52, February, 1969. '
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starting at to =

or:

x(t) =

Thus, from equation (4), the error response to

0, is given by:

x(t) = [ o(t-0) B u do

C(u) f
= ft sin w_(t-0) do
g o s
(u) £
N (t .
- =3 fo sin w,(t-0) do
o (u) £
~tankL E fg sin ws(t—c) do
(W) .,
N [t sin w_(t-0) do
g o s
,.(u)fE _
secL - [~ sin w_(t-0) do
g o s
(u) £ .
N ft cos w_(t~-o) do
r o s
.(u)f
secl E (t

fo cos ws(t—c) do

accelerometer bias




Integration yields the result:

— p— -~y

. (1 - cos w_t) (u)fy/g

€q -(1 - cos w_t) (u)fy/g

€p -(1 - cos w_t) tanL (u)fy/g|
x(t) = SL | = (1 - cos wst) (u)fN/g‘

SA (1 - cog wst) secl (u)fE/g

SL sin wst (quN/rws

‘6X_ L s%n w;t secL (u)fE/rwS |

Thus it is seen that this method yields results very quickly
and efficiently compared with sclving equation (1) via Cramer's

Rule.



